ELEMENTARY LINEAR ALGEBRA - SET 3

Analytic geometry on the plane

1. The triangle is spanned by vectors $\vec{v}, \vec{u}, \vec{w}$. Using vector calculus, express the medians of that triangle in terms of these vectors.
2. The parallelogram is spanned by vectors $\vec{v}=(1,2), \vec{u}=(-3,4)$. Compute the acute angle between the diagonals.
3. The lenghts of vectors \vec{v} and \vec{u} are equal to 3 and 5 , respectively. Knowing that $\vec{v} \circ \vec{u}=-2$, compute $(\vec{v}-\vec{u}) \circ(2 \vec{v}+3 \vec{b})$.
4. Write an equation of the line through points $P_{1}=(2,3)$ and $P_{2}=(-3,7)$ in the three forms: directional, slope-intercept and general.
5. If a line ℓ through $P=\left(x_{0}, y_{0}\right)$ has a direction vector $\vec{v}=(a, b)$, then the parametric form of an equation of ℓ is given by the system of equations

$$
\left\{\begin{array}{l}
x=x_{0}+a t \\
y=y_{0}+b t
\end{array}\right.
$$

where $t \in \mathbf{R}$ is a parameter. Find the parametric form of an equation of the line through $P=(3,4)$ with a direction vector $\vec{v}=(1,2)$. Then find the parametric form of an equation of the line given in Problem 4.
6. Find the intersection point of the lines with equations given in the parametric form

$$
k:\left\{\begin{array}{l}
x=1-t \\
y=3+t
\end{array} \quad \text { and } l:\left\{\begin{array}{l}
x=2 s \\
y=3-s
\end{array}\right.\right.
$$

7. Find an equation in the general form of the line through $P=(1,2)$ which is parallel to the line with equation $2 x+3 y-1=0$.
8. Find an equation in the general form of a line through $P=(1,2)$ which is perpendicular to the line with equation $2 x+3 y-1=0$.
9. Find m such that the distance between points $P_{1}=(1,0)$ and $P_{2}=(m+3,-2)$ is equal to 4 .
10. Compute the altitude of the triangle with vertices $A=(0,0), B=(-1,3), C=$ $(2,5)$ through the vertex C.

Romuald Lenczewski

(most problems are taken from the lists of M. Gewert and Z. Skoczylas)

